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Abstract—The issue of characterizing multiport planar circuits
using the method of moments is addressed. For this purpose
two commonly encountered excitation models, the delta-gap volt-
age, and the impressed-current ones are considered. The two
excitation models are thoroughly examined and the conditions
are determined under which they become equivalent. Based on
this equivalence, it is shown how to correctly use the models
for extracting the required network representation of general
multiport planar circuits, possibly having transversely multiseg-
mented ports, in an unambiguous way. Supportive numerical and
experimental results for the characterization of shielded planar
circuits are also provided.

I. INTRODUCTION

I N this paper, we study in detail the problem of characteriz-
ing mttltiport planar microwave circuits with the method of

moments (MoM) using two commonly encountered excitation
models, the delta-gap voltage and the impressed-current mod-
els. This includes the treatment of multiport circuits for which
some of the physical ports are transversely multisegmented.
The problem under consideration concerns the general passive
multiport microwave planar circuit of Fig, 1. Our main interest
is for shielded monolithic microwave/millilmeter-wave inte-
grated circuits (MMIC’ s), however, the same considerations
apply to open microstrip-circuits and to microstrip-fed printed
antennas as well. This kind of planar circuit communicates
with the external world through ill physical ports attached to
an equal number of intrinsic microstrip feed-lines as shown in
Fig. 1. The MoM should now be invoked for characterizing
this general planar circuit as an M-port network. Specifically,
one seeks for relations among the terminal voltages and
currents of the form

[:z~[l ‘ ‘ ‘ H’]=ld.Z~<2 Zjffll I;f
or

[z’][I’] = [v’]. (1)

Although (1) implies expressing the network characterization
through the definition of a terminal impedance matrix, any
other multiport characterization (admittance matrix, scattering
matrix, etc.) is equally valid. To establish such a network
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Fig. 1. A general passive 31-port planar microwave circuit fed by microstrip
lines. The intrinsic feed-lines are also considered part of the circuit.

characterization with the MoM, we examine here the use of
appropriate excitation models such as the delta-gap voltage
and the impressed-current models.

The delta-gap voltage model assumes ideal voltage sources

exciting each physical port of the planar circuit. Subsequently,
a network representation of the given circuit is directly ex-
tracted from the associated moment matrix. Due to its sim-
plicity, the delta-gap voltage model has been adopted by
many researchers and a partial listing of the corresponding
work is given in [1]–[6]. On the other hand, the impressed-

current model assigns known excitation currents at each phys-
ical port and the general idea can be found described in
[7]-[9]. Subsequently, the corresponding network parameters
can be obtained either through the definition of the terminal
impedance matrix elements of ( 1) or from familiar variational
expressions derived from the reciprocity theorem.

A widely adopted technique for extracting network parame-

ters from multiport microwave circuits is to extend the physical
length of the intrinsic circuit feed-lines (see Fig. 1) so that

incident and reflected traveling waves can be identified and
then apply ideal transmission line theory. This can be done
either by exciting the ports using the delta-gap voltage [6] or
the impressed-current [9] models and is easily applicable to
ports which are transversely mtdtisegmented. However, this
approach requires to include in the analysis sufficiently large
transmission-line sections so that a recognizable standing-
wave is established on them, thus stressing an already compu-
tationally intensive effort [5], [10]. Also, it becomes difficult
to extend this method in the case of circuits embedded by
multiple coupled transmission line sections [1 1]. In this paper,
our focus is on the characterization of multiport circuits
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directly from the delta-gap voltage or the impressed-current
models. In case that there is a need to change the reference
planes or even to extract any numerical parasitic effects
from these mathematical excitation models, one can resort to

numerical de-embedding techniques such as the ones described
in [5], [10], [12]. This last possibility renders the use of the
direct characterization of multiport circuits, considered in this
paper, an attractive alternative to the method of identifying
forward and backward traveling waves.

An outline of the present paper is as follows: In Section II,
a realistic excitation mechanism involving the transition from
a coaxial-line to a microstrip line is considered and related
to the two mathematical excitation models under considera-
tion, namely, the delta-gap voltage and the impressed-current
models. In Section III, the delta-gap model is described for
the network characterization of multiport planar circuits. The
impressed-current model and its intimate relation to the delta-

gap voltage model are described in the subsequent Section
IV, where also the conditions are determined under which the
two models become completely equivalent. Section V deals
with some aspects of using familiar variational expressions
for extracting the network parameters with the MoM and the
impressed-current model. The established equivalence between
these two excitation models enables to extract network param-
eters from multiport planar circuits in an unambiguous way.
Some further ramifications of this equivalence are discussed
in Section VI. Section VII extends the discussion to the more
general problem of characterizing multiport circuits for which

some of the physical ports are transversely multisegmented.
The final Section VIII is devoted to some numerical examples
of treating multisegmented ports in shielded planar circuits.
The numerical. results are also experimentally verified.

II. EXCITATIONMECHANISM
AND ASSOCIATEDMATHEMATICALMODELS

In this paper we consider that each microstrip feed-line is
attached to the corresponding port through a lateral microstrip
to coaxial transition as shown in Fig. 2. This type of feeding
configuration is compatible with microstrip shielded and open
circuits or with patch antennas fed by microstrip lines. What is
important to point out is that the ground-plane is extended up
to the tip of the microstrip feed-line and thus there is no space
left between the feed-line and the ground-plane. Physically,

the excitation is provided by the fields in the coaxial aperture.
The scattering parameters of the microwave circuit can then
be unambiguously defined based on the incident and reflected
TEM waves in the coaxial-lines many wavelengths away
from the transition to the microstrip lines. However, the
exact solution of the corresponding boundary value problem
complicates the analysis and simpler mathematical excitation
models, such as the delta-gap voltage model, can still provide

excellent computational results [3], [4]. These models can be
derived by assuming that at the transition of the coaxial to
microstrip line, only the TEM mode is excited. This implies
that the pattern of the coaxial aperture fields is known and
naturally leads to the magnetic frill model, which can be
reduced to the well-known delta-gap voltage excitation model
(for a comprehensive review of the process see, for example,

Fig. 2. The physical excitation mechanism for each port.

[16]). The impressed-current model can be further derived by
assuming that instead of known excitation fields (as is the
case of the delta-gap voltage model), the terminal currents
are known (i.e., impressed), whereas the terminal voltages are
unknown and have to be computed. In fact, in this paper, we
consider the well-established delta-gap voltage model as the
fundamental one [16] and then we try to properly define an
equivalent impressed-current model derived from the delta-gap
model.

III. THE DELTA-GAP VOLTAGEEXCITATIONMODEL

Consider the general multiport circuit of Fig. 1. For the
moment, it is assumed that each physical port is modeled
using a single cell. The case of modeling a physical port with
more than one transverse cells is treated in Section VII. The
goal of the MoM analysis is to represent the planar circuit
by an equivalent network matrix relating, for example, the
port voltages and currents as shown in (l). In the delta-gap
model, the general port Pm (m = 1, ..., M) is assumed to be
excited by a voltage source of magnitude V;, applied within
an infinitesimally small gap of length 6 ~ O and across the
extended ground-plane and the tip of the mth feed-line, as
shown in Fig. 3. Also shown in Fig. 3 is the corresponding
expansion of the induced circuit current with some arbitrary
kind of subsectional basis-functions in the framework of the
MoM. The delta-gap voltage source at each port provides
an impressed (or incident) excitation field described by the
expression

Einc= V;/i(i=– ‘Fm)iim (2)

where Fm is the location of the port and ii~ is the outward
normal parallel to the corresponding feed-line. As shown in
the same Fig. 3, an induced terminal current 1A flows through
the voltage source, which spreads into a half-subsectional basis
function also located at Tm. The corresponding electric field—
integral equation (EFIE) governing the surface current, .J~, on

all conductor surfaces is then given by

/

M—

GE.J(F, F’) 7s(7’) ds’ = – ~ V:$(F– Fm)Am(3)
SC ‘M,=l

where ~EJ is the pertinent transverse part of the electric field
Green’s function and Sc denotes all circuit-cells including the
feed-line and port ones. The left-hand side of (3) represents the
tangential electric field due to all induced currents (customarily
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whereas the rest {,~., n = M + 1, . M + N} are full-
V; subsections. In addition, the index, t, stands for terminal (or

port) quantities that are associated with half-subsectional basis
elements whereas the index, c, denotes circuit (including the
feed-lines) quantities associated with full-subsectional basis

1 elements. Applying the MoM procedure to (3), using the cur-
rent expansion of’ (4) and corresponding weighting functions

I
{?jn,7t == 1,... , M+N} yields (5), as shown at the bottom of
the page, where the MoM impedance elements are defined by

.

Fig. 3. A delta-gap voltage source exciting the general port #?I~ and the
associated MoM description, For the MoM description, the quantities that
participate in the excitation process are shaded.

referred to as the scattered field ESCat) whereas the t-ight-

hand side is the impressed tangential electric field defined
by (2). Thus (3) expresses the usual condition of vanishing
tangential electric field on the conducting circuit surface,
jjinc + @cat ~ 0. To be more specific about this condition,

the observation point F of’ the EFIE (3) runs all-over the entire
surface S<., which implies that the same condition also extends
to the location of the induced half-subsectional currents at
‘rm,. From a mathematical point of view, this is necessary
because otherwise (3) would only admit the trivial solution,
.~s = 0. Physically, the same requirement is compatible with
the assumption of using ideal exciting voltage sources, which
implies that they have zero internal resistance.

Now, within the framework of the MoM, the induced
surface current is expanded into a set of subsectional basis
functions as shown below

,Vr k[4hT

777=1 r!,=.h{+l

where, without loss of generality, it is assumed that the width
and base value of each basis function are unity. Also, it
is assumed that the basis functions in the range {,fr,l,,‘m =

1, ~, M} represent half-subsections (induced port currents)

and the distinction between port (terminal) and circuit quanti-
ties is explicitly designated. In block matrix form (5) can be
rewritten as

[~~ n:]=[v (7)

The delta-gap voltage formulation is very convenient be-
cause by inverting the associated moment matrix [Z], terminal
relations among the port voltages and currents are directly
obtained. Indeed, if the moment matrix is inverted as shown
below

Then [Y~~][Vt] = [1’] and, therefore, the sub-matrix [Ytt]

is nothing but the required network admittance-matrix [Y+],
characterizing the given M-port circuit. Likewise, by a simple
manipulation of (7) one can also obtain the relation between
the terminal voltages and currents in an impedance matrix
form that is given below

[z’] = [z”] - [Z’’] [z’’]-’ [z”]. (9)

In practice, the network representation of the given planar-
circuit in terms of terminal voltages and currents is converted
in a form that involves experimentally observable quantities.
This is usually accomplished by converting the network admit-
tance or impedance matrix to a scattering-parameter matrix.

IV. THE IMPRESSED-CURRENT MODEL AND ITS

RELATION TO THE DELTA-GAP VOLTAGE MODEL

Once more, consider the M-port circuit of Fig. 1, again
with the assumption that each physical port is modeled using

a single cell. In the impressed-current model, half-subsectional

zkf+l,,vl+l Zibf+l:w+z zAf+l,lw+lv

ZJV1+2JVI+1 zJf+2,L1+2 z4~~+2,j\f+,\,

v;
‘/J

‘L-

0
0

0

(5)
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Fig. 4. A current source exciting the general port #?t and the associated
MoM description. For the MoM description, the quantities that participate in
the excitation process are shaded.

currents are assumed impressed at each port and terminal rela-

tions of the form described by (1) are sought for characterizing
the ill physical ports. The exact description of this model is
illustrated in Fig. 4. As shown, the nth port of the circuit is

now assumed to be excited by a current source of magnitude

I; existing in the infinitesimal gap between the extended

ground-plane and the tip of the microstrip feed-line. The
excitation current spreads into an impressed half-subsectional
basis function located at the port position Fn as shown in the

same Fig. 4. The corresponding induced terminal voltage V: is

measured across the current source in the infinitesimally small
gap region. Note that although the gap length, S, tends to zero,
a nonvanishing finite voltage V: should always be induced in

order to establish a finite input-impedance. This means that as

the length of the gap-region tends to zero, the induced field
across it tends to infinity. The assumptions made so-far, for

defining the impressed-current model in Fig. 4, might initially

seem rather arbitrary. As will soon become evident, however,
they are in fact necessary for establishing equivalence with
the delta-gap voltage model.

To proceed further with this model we consider one port
excited at a time with the rest of the ports open-circuited. Let
the nth port be the excited one. Then, the impressed-current

j and the nth row of the networkis given by J~p = I,, ‘T,

impedance matrix is determined by definition from the relation

~t v;,
mn — T+ (lo)

1;

with all ports but the nth open-cicuited, where V: is the
induced terminal voltage at the mth port. The corresponding
integral-equation for this excitation model, governing the
induced circuit current ~, is as usually obtained by enforcing
a vanishing tangential electric field on the circuit surface S.

where Sn denotes the area of the nth port-cell. The left-hand

side of (11) is the tangential electric field due to all induced

surface currents, whereas the right-hand side is the tangential

electric field due to the impressed-current. At this point, it is
important to compare the impressed-current integral ( 11) with
the delta-gap voltage integral (3). This time, in order to ensure
that (11) has other than the trivial solution, ~, = – ~“’r’,
the observation point f should exclude the location of the
impressed-current Fm. This requirement is exactly the opposite
for the the delta-gap voltage model in which case (3) has to
be enforced at the location of the voltage source Fn. From
the physical point of view, this admissibility condition for
(11) is compatible with the assumption of an ideal current
source that provides the impressed-current ~“’p and has
an in.nite internal resistance. Another noticeable difference
between integral equations (11) and (3) is that unlike the
case of (3), the induced current ~, in (11) only contains full-
subsectional basis elements since the half-subsectional ones
are assumed to be impressed. Following the discussion of these
fine details, we can now proceed with the MoM and expand the
induced current into a set of full-subsectional basis functions,
i.e.,

For the sake of clarity and coherence, (12) makes use of

the same numbering and symbol conventions as its delta-gap
voltage model counterpart of (3). Another important point to
mention is that in order to make a meaningful comparison
between the two excitation models under consideration, the
same expansion basis functions are used for both the delta-gap
voltage and the impressed-current models. This automatically
implies that in the case of the impressed-current model, the
half-subsectional basis elements used for representing the

impressed currents belong to the same family as the basis
elements used for expanding the induced currents. Applying
the MoM now to (11), utilizing the current representation
of (12) and the weighting functions {m~, n = M + 1,

....M + N} yields in matrix form

(13)
where the same definition for the MoM elements given in (6)
also applies.

From this point on, one way to proceed with the de-

termination of the required network characterization would
be to utilize familiar variational expressions derived from
reciprocity considerations. Such a possibility will be examined
in the next section. However, the most intuitively simple
way for determining the required terminal network impedance
elements is to resort to the impedance-matrix definition of ( 10)

(14)

The field denoted as &~~l in (14) is the total tangential field
generated by both the impressed-current ~~mp and the induced
circuit currents ~s. This field, which is explicitly given in (15)
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for clarity

J%td(r) =
I

EE,7(T,7’) (J;’’’’(T) + .7. (’7+)) d.$’ (15)
s,.,

has been enforced by the MoM to vanish on the circuit surface
except at the location of the impressed-current and at the
corresponding open-circuited current sources across which the
induced voltages are measured. To continue the discussion, one
should notice that in order to derive (13), we have required that

only the moments of the total tangential electric field (15) with
the circuit weighting functions {?TJ,,,n = fil + 1, . . . . Al+ N }
do vanish. In the case of the delta-gap voltage model, however,
thecomplete set of the weighting functions has been used
to enforce the condition of vanishing electric field on the
surface of the circuit. With this observation as a guidehne,
we now proceed to use the rest of the weighting functions

associated with the location of the ports { {I,,. n = 1, . . . . Al}.
in conjunction with ( 14). in order to retrieve the required
network impedance elements. Under these considerations, the
inner products between the total electric field 13tO+.1of ( 15) and
the port weighting functions should vanish everywhere except
at the location of the impressed and open-circuited current
sources, Tn, where the induced volt~ges ~;; are sampled out.
Therefore, one cm immediately write the following expression
for the induced terminal voltages

T:, = ((iI,,,. Et”t.l)

= 2,,,,,1,7+ z,,,,.11+l~:u+l

+ + ZW,, AI+,VI,II+, Y. m,=l,.,Al

= [2’’] 1;, + [z”] [r]. (16)

Using these voltages in the defining equation (14) and elim-
inating the induced circuit currents by virtue of (,13), one
immediately recovers the network impedance-matrix repre-
sentation (9) found before with the delta-gap voltage model.
Therefore, this treatment of the impressed-current model pro-
vides identical results with the delta-gap voltage excitation
model. It is reassuring to Jlso observe that the delta-gap
voltage model (7) is formally identical to the impressed-
current one of (13) and ( 16) but with the interpretation of
the terminal voltages and currents different, For the delta-
gap voltage model, the terminal voltages are impressed and
the terminal currents are induced, whereas for the impressed-
current model the terminal currents are impressed and the
terminal voltages are induced.

V. NETWORK CHARACTERIZATION USING VARIATIONAL

EXPRESSIONS WITH THE lMPRESSED-CURRENT MODEL

One problem that the formulation based on the impressed-
current model faces is that (14) requires a direct access to

the electric field in order to define the network impedance
elements. Since the MoM does not explicitly provide such an
access, it becomes attractive, instead of using ( 14), to resort to
definitions derived from familiar variational expressions for
determining the network impedance elements [16]. Such a
defining equation is given below

(17)

However, this option can induce confusion and care should
be exercised in its correct interpretation and its applica-
tion. The conceptual difficulties in applying ( 17) with the
impressed-current model and the MoM mamly arise from

the interpretation of the electric field due to the impressed-
current ~(,~;;’p’). If tliis is the total field (as lt should be),
then it vanishes on all conducting surfaces and therefore
the impressed currents should be physically separated from
them, leaving little hope of a direct comparison between
the impressed-current and delta-gap voltage models. Such a
separation of the impressed-current region from the conducting
parts has in fact been found necessary in the work of [9],
presumably due to similar considerations. On the other hand,
if the impressed currents are not separated from the planar
conductors and the electric field is interpreted as originating
only from the induced currents ,~, then the diagonal impedance
elements lose their “self-impedance” component (i. e., the
interaction of ,~~,,to itself is lost) and once more the impressed-
current and delta-gap voltage models become incompatible.

The correct interpretation of (17) within the MoM and the
impressed-current model becomes apparent from the analysis
presented in Section IV. In this context and in analogy to ( 16),
equation ( 17) can be thought of as being the e~tforcement oi’ the
condition for a vanishing total electric field, 13tOt.1,everywhere
on the support of the port-cells except at the locations of the
impressed-current sources Fm. In this case, the role of the port
weighting functions in the MoM {lzn,, r~l = 1, . . . . M} is
undertaken by the impressed currents {,~~;’~’,/r/= 1, ,M}.

In the special case of using Galerkin’s technique. i.e. {~p =

fl,~P = 1. .A{ + N}, the impressed-current model of
Section IV becomes compatible with the variational expression
( 17) and consequently so does the delta-gap voltage model of

Section III. Furthermore, with Galerkin’s method we can use
the condition {(’/Ur,~t”t.,1 )=o, p= Jl+l,., flI+p}
imposed by the MoM to replace the impressed-current in (17)
with the total current J,. + .~;,~p and extend the support of the

integration over the entire circuit surface. This in fact leads to
the precise definition of the impedance variational expression
which implicates the e~ztire surface of the circuit [17]. On
the other hand. in the general case of arbitrary weights, the
use of (17) corresponds to applying the MoM with a delta-
gap model and a mixed type of weighting functions, i.e.,

{rDP = ~P only forp = 1,..., M}. In all cases, care should
be exercised so that the total spectrum of weighting functions
forms a basis for the range of the EFIE operator [13].

The practical conclusion of the above arguments is that
when using variational expression (17 ), it is not necessary
to separate the impressed current region from the conducting
surfaces. This statement is true despite the fact that E ( .~;,n’p)
in ( 17) stands for the total electric field.

VI. DISCUSSION

Up to this point. we have seen how to properly interpret
the delta-gap voltage and impressed-current excitation models
so that they become equivalent. It should be mentioned that
these two models are notstrictly dual to each other. This is
because the dual of the delta-gap voltage model is obtained
by interchanging the lumped voltage source in Fig. 3 with
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a lumped current source. However, when this is done, the
impressed-current model of Fig. 4 is not exactly recovered
since the impressed current is distributed and extends to
the support of the terminal half-subsectional basis function.
Nevertheless, with the careful consideration of the impressed-
current model described in Sections IV and V, we have been
able to establish its one-to-one correspondence to an equivalent
delta-gap voltage model. With this equivalence as a guide,

we can go one step further and ask the question whether it
is legitimate to use an arbitrary current distribution as the
impressed-current source In the framework of the present
analysis and having in mind the results of [13] on the choice
of the expansion functions, it appears that the answer to
this question is positive, provided that the impressed currents
belong to the span of the basis-functions chosen to expand the
domain of the integral operator. Only then, the impressed-
current formulation remains consistent with an equivalent
legidnzate delta-gap voltage model.

Another point that in retrospect emerges as worth mention-
ing is that the delta-gap 6-space depicted in Figs. 3 and 4 can

be viewed as merely an artifice introduced for “measuring”
impressed or induced port voltages. In view of (16), one can
instead consider the weighting procedure with the port-cell
weights as the fundamental mathematical process of defining

terminal voltages and completely avoid the implication of
delta-gaps associated with the port cells.

VII. TREAlrlNGMULTISEGMENTEDPHYSICAL PORTS

In the previous sections, we have assumed that in the
framework of the MoM each physical port is represented

by a single cell. In many occasions, however, it is desirable
to implicate more than one transverse cells, for example, to
accurately model the transverse behavior of the current or to
comply with the global grid-resolution used for the rest of the
circuit. To this end, first consider a one physical port circuit
having its input port segmented into Ll transverse cells as
Fig. 5 shows. To treat this situation with the impressed-current
model, it would seem appealing to assign to each of the M

transverse port-cells impressed currents of the type described
in Fig. 4 and then utilize (17) to evaluate the input-impedance
of the physical port. Such an approach will very quickly reveal
that the impressed currents at each of the constituent port-
cells cannot be chosen arbitrarily. The reason, of course, being
that since the M cells belong to the same physical port, the
induced voltages at each cell should be identical. In other
words, the pofi--cells are physically connected in parallel and
this constraint has to be taken into consideration. Another
interpretation for the same phenomenon would be that the
impressed-currents at each of the M’ cells should be pre-

selected in such a way so that the true transverse behavior of
the feed-line longitudinal current is successfully approximated
(e.g., Maxwellian distribution in the case of an isolated line).

The simplest way to resolve the mtdtisegmented port situ-
ation of Fig. 5 is, perhaps, to resort to the delta-gap voltage
model. For this purpose, the physical port should be assumed
excited by a distributed delta-gap voltage source of magnitude
V. which induces terminal (port) half-subsectional currents I&,
as shown in Fig. 6. At this point, the corresponding induced

[

Cell

Cell

Cell :0
---

#l --
#2

I -- PLANAR CIRCUIT

#M ‘----
/

Fig. 5. A one-port circuit with the input port nmltisegmented with A1
transverse cells.

. .

Fig. 6. A multisegmented port excited by a distributed delta-gap generator.

port current is obtained by summing-up all the partial currents
I;. Therefore, the associated input impedance is determined
by

(19)

which implicitly enforces the condition that the M port-
cells are physically connected in parallel. For determining the
required currents 1A it is assumed that the circuit is modeled
using M half-subsections for the induced partial currents and
N full-subsections for the rest of the induced currents. Under
these assumptions, the MoM equations (5) and (6) are still
valid but with the provision that: {Vl = V2 = c. . V~ = V.}.

The corresponding terminal relationship between the applied
voltages and induced port currents is therefore given by

[Y’][vo] = [1’]. (20)

Within the framework of the MoM, the required input
impedance as determined from (19) and (20) is then given by

Zi. =
1 v;— (21)

X=l X=l Y;q – [W-m-’][vo] “
In conclusion, to characterize a multisegmented physical port
with the delta-gap voltage model, each segment should be
treated as a separate mathematical port. Eventually these
mathematical ports should be combined in parallel in order
to obtain the required physical port input-impedance.

Having established the equivalence between the delta-
gap voltage and impressed-current models as described in
Sections III and IV, we can safely claim that the same
procedure for characterizing multisegmented ports can be
followed when originating from the impressed-current model.
However, such a treatment of multisegmented ports is justified
provided that every physical port is electrically narrow so that
no transverse currents flow across them. Only then, a unique
induced voltage can be defined for each physical port.
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The extension of our discussion to the general case of
multiport (physical) circuits in which one or more physical
ports are transversely multisegmented is quite straightforward.
To achieve this, each cell belonging to a physical port should

be treated as an independent mathematical excitation port. The
resulting augmented multiport circuit should then be character-
ized using the MoM under either the delta-gap voltage or the
impressed-current excitation models. This process determines
a corresponding augmented terminal admittance matrix [Y~ug]
which is uniquely defined, irrespective of the type of excitation
model used. Subsequently, the resulting augmented admittance
matrix [Y,~llg] should be reduced to the required network
admittance matrix [Yt] by combining in parallel mathematical
ports belonging to the same physical port with the aid of
standard circuit theory.

VIII. NUMERICAL EXAMPLES

A simple verification test for the process of handling mul-
tisegmented ports, described in the previous Section VII,
consists of analyzing a given planar circuit under different
grid resolutions and comparing the corresponding results. As
an example, consider the shielded microstrip single-stub filter
of Fig. 7 [14]. This benchmark circuit is analyzed using
the mixed potential integral equation (MPIE) technique in
conjunction with Galerkin’s procedure and triangular rooftop
basis functions [7], [8], [141, [15]. The stub is analyzed under
two different uniform grid resolutions. In the first one, a 20
x 20 grid is employed to discretize the cross section of the
shielding rectangular box and this corresponds to implicating
only a single cell for modeling the transverse current on
the microstrip lines. On the other hand, the second grid
resolution corresponds to a doubly-fine 40 x 40 uniform
mesh. This time, two cells are used to model the transverse
behavior of the microstrip line currents. According to Section
VII, in order to analyze the given circuit under the doubly
fine resolution an augmented admittance matrix [Y~Ug]should
first be computed for which each port-cell is treated as an
independent mathematical port, A schematic for the associated
augmented circuit is shown in Fig. 8. As shown in Fig. 8, the
input physical port (A) consists of two transverse cells, 1) and
3), whereas the output port (B) is segmented with cells 2)
and 4). The associated augmented admittance matrix is a 4 x
4 one, corresponding to mathematical ports 1)4). According
to Section VII, in order to obtain the required network 2 x
2 admittance matrix [Yt ] characterizing physical ports (A)
and (B), mathematical ports belonging to the same physical

port should be combined in parallel. This means that [Yt] is
determined by

y:A = y~ + %!ug,31 + %@3 + y&g,33aug,ll

‘;B = ‘AA = ‘at.g,12 + ‘;ug,14 + ‘~ug,32 + ‘~ug,34 (22)

yj$B = yt~ug,zz + yJ11g,24 + yJug)42 + Y~ug,44.

The computed scattering parameters for the circuit of Fig. 7 as
a function of the frequency under the two grid resolutions are
compared with measurements in Fig. 9. The characterization
of the stub with the doubly-fine 40 x 40 resolution is carried
out according to (22). As shown in Fig. 9, the procedure of

4.6 mm

-+ F-

4.6 mm

1
Port B

T

~~mm~

Fig. 7, A shielded microstrip single-stub filter, The shielding rectangular
cavity has dimensions 92 mm x 92 mm x 11.4 mm, the substrate is RT
Duroid 5870 of thickness t= 1.57 mm and dielectric constant e,. = 2,33,

:3-–
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——
4$

— —

2m——

I I

Fig. 8, A schematic for the augmented circuit corresponding to Fig. 7.

Section VII is justified since the 40 x 40-grid computations
indeed recover the results of the 20 x 20 grid. In calculating
these scattering parameters both the delta-gap voltage and
the impressed-current models have been implemented and as
expected yielded identical results. Furthermore, the computed
results are consistent with measurements performed on an
HP85 10C network analyzer.

IX. CONCLUSION

In this work we have dealt with the problem of characteriz-
ing microstrip-fed multiport planar passive microwave circuits
using the method of moments. For this purpose, we have
considered two commonly encountered excitation models: the
delta-gap voltage and the impressed-current models. First, we
have determined and discussed the fine mathematical and
physical conditions under which the two excitation models
become equivalent. This was done both from the viewpoint
of using the direct definition of the network parameters and
when using familiar variational expressions. Based on this
equivalence we have shown how to extract network parameters
from multiport planar passive circuits in an unambiguous
way. This extends to MoM discretization schemes in which
some of the ports are transversely multisegmented. Supportive
numerical and experimental results for the characterization of
shielded planar circuits were also provided.

In our view this is the first time that such a comprehensive
treatment of the fine details associated with the subject of
characterizing multiport planar circuits using the MoM is
being undertaken. Apart from the practical significance of
the presented work in characterizing multiport planar circuits,
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Fig, 9. The computed and measured scattering parameters for the benchmark
microstrip filter of Fig. 7, analyzed with 20 x 20 and 40 x 40 grids.

it also serves the purpose of clarifying many aspects of the
excitation modeling which undoubtedly still is a constant
source of confusion among the MoM community.
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